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On the Synthesis of DualOResonant

Coaxial Cavities”

F. M. WALTZ~, MEMBER, IEEE

Surn?nar~-Mathematical analyses of multisection coaxial cavi-
ties predict the possibility of shifting one of the spurious resonant fre-
quencies (present in all coaxial cavities) to a desired frequency, thus

allowing one cavity to do the work of two. The specific problem con-

sidered in thki paper is the design of cavities to resonate a terminating

capacitance (e.g., tube capacitance, “varactor” capacitance) at two

harmonically-related frequencies, with the addltionaf requirement

that the two frequencies remain very nearly in the desired ratio de-
spite wide variations in the magnitude of the terminating capacitance.

(As one obvious application, a cavity meeting these requirements
would make possible an inherently-sdigned single-cavity frequency
multiplier.)

Curves based on computed results for specific cases are pre-
sented. Experimental cavities constructed according to the predicted

designs have etilblted performance which is in very close agreement
with the analysis, thus verifying both the validity of the method of

analysis and the feasibility of the desired result.
Application of the same techniques to other and more general

problems (e.g., single-cavity mixers, voltage-tunable filters) are

suggested.

I. INTRODUCTION

I

N THE UHF FREQUENCY RANGE, coaxial

cavities are widely used as resonant elements be-

cause they provide excellent performance and lend

themselves to straightforward design, production, and

tuning methods. Disadvantages include the spurious

resonant modes frequently encountered, and the exces-

sive size, weight, and complexity of the multiple-cavity

circuits needed for all except the simplest applications.

Thus, the paradoxical situation exists that coaxial cav-

ities have extra (and usually unwanted) resonant fre-

quencies, but that in a typical application a number of

cavities must be used in order to obtain resonance at the

desired set of frequencies.

This paper considers the use of multiple-section cav-

ities to shift a spurious resonant mode to a desired

multiple of the fundamental frequency in such a way

that the resonant frequency ratio is insensitive to varia-

tions in the terminating capacitance (i.e., the desired

frequency ratio is maintained within close limits in spite

of wide variations in the terminating capacitance).

Insensitivity to capacitance variation eliminates the

need for selection or tuning of cavities to match indi-

vidual tubes or allows the use of such cavities with time-

varying capacitances.

Results of the analyses of three different cavity con-
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figurations are presented. These analyses, based on

lossless approximations to the actual cavities, indicate

that the desired results can be achieved with cavities of

the types considered. Experimental results are pre-

sented which verify both the feasibility of the desired

result and the validity of the analysis procedure. For

purposes of comparison, uniform coaxial cavities are

also investigated (Appendix I), and it is shown that the

desired results can not be obtained with such cavities.

II. ANALYSIS

A uniform Iossless coaxial cavity of length L and

characteristic impedance ZO, short-circuited at one end

and with a capacitance C connected across the other

end, resonates at an infinite number of frequencies f

each of which satisfies the following transcendental

equation (neglecting end effects):

1
—+jZ~tan27r~Z = O
j2ir-C c

(1)

where c is the velocity of propagation of electromagnetic

radiation in the line under consideration. Except in

certain special cases (considered in Appendix I), these

frequencies are not harmonically related.

In certain applications (e.g., frequency multipliers,

mixers) it is desirable to have a single cavity resonate a

terminating capacitance (e.g., tube capacitance, diode

capacitance) at two harmonically-related frequencies.

(Cavities having this property will be said to satisfy the

dual-resonance condition.) Furthermore, the frequency

ratio should be insensitive to variations in the terminat-

ing capacitance, so that the dual-resonance condition

is maintained, to a good approximation, over a range of

terminating capacitance variation. A cavity design

which satisfied this condition (henceforth referred to as

the insensitivity condition) would be particularly desir-

able in applications where the terminating capacitance

changes with time or where production or cost require-

ments preclude the tuning or matching of particular

cavities to particular tubes. It is shown below that

coaxial cavities of the types depicted in Fig. 1 can be

designed to produce the desired results, whereas uniform

coaxial cavities can never meet both conditions (see

Appendix I).

These two conditions will now be stated in terms of

the cavity variables and parameters: let Z~) represent

the impedance of the cavity, as seen from the open end,
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(a)

(b)

(c)

Fig. l—Cavity configurations: (a) ill-line, showing use with “light-
house” triode, (b) external re-entrant, ShOWiLLg use with “varac-
tor, ” (c) internal re-entrant, showing use with “pencil” triode.
(C is the equivalent capacitance of the tube or “\-aracto,-.” )

where Z(f) is a given functionl of ~. For each value of

terminating capacitance C,

fies the relation

any frequency which satis-

(resonance condition) (2)

is a resonant frequency. Assume that there exists a pair

of solutions to (2), ~=~l(C) and f=j2(C). Ideally, ~z

should equal n~l for all values of C, where n is the desired

frequency ratio. This is not possible, in general, but

can be approximated over a limited range of C near Co,

if Z(f) is chosen so

f2(co) = njl(co)

and

df,(C) dfl(C)
=9L—

dC C70 dC

hat

(dual-resonance condition) (3)

(insensitivity condition). (4)

~o

These conditions will now be rewritten in a more usable

form: Substitution of (2) into (3) yields

Z[fl(co) ] = nZ[~z(CO) ] (dual-resonance condition) (5)

1 The detailed expressions used for each type of cavity are given
by \Valtz [1].

2 This approximation makes use of the first two terms of the
Taylor’s-series expansions of ~1( C) and ~:( C) about C= CO. A better
approximation could be achjeved bv considering mor~ -terms in the
series, at the cost of greatly increased computational ddfuxlties.

as an equivalent to (3). Evaluation of df/dc from (2), (3)

and (5) allows (4) to be rewritten as

~z(f) = ~, ~z(f)

w .f=fl (c’o) v .f=nf, (c’,)

(insensitivity condition). (6)

Thus, the satisfaction of (2) at f =f~(CJ, and of (5) and

(6), is sufficient to guarantee that Z(f) satisfies both the

dual-resonance condition and the insensitivity y condi-

tion at C= Co.

A nalsis of In-Line Cavity

Consider first the in-line type, Fig. 1 (a), with lengths

LA and LB; diameters d], d?, and d~; characteristic im-

pedances Z,l and Zn; terminating capacitance C; and

fringing capacitance CY, 4 and assume that the con-

ductors have infinite conductivity.’ The impedance

expression Z(f) for this case (given in detail by Waltz

[1]) is sufficiently complicated that an easy determina-

tion of the ranges of the variables over which solutions

exist is impossible. Nlost of the difficulty arises due to

the complex inter-relationship of CF and the cavity

dimensions. Since in the applications contemplated in

this paper Cr is usually not large comparecl to C, CI, will

be neglected in the initial approach to the problem.

Solution of even this simplified problem in terms of

known functions is for practical purposes not possible,

but solution by numerical methods is not (difficult. Fig. 2

shows part of the solution to this problem in terms of

the quantities Y, X, 8A, and 19Bfor the case n =2, where

ZB 1
y.—, x=——

2A 27rj-lcl)z13 ‘

z~f ~LA 27rf ILB
6.4=—, and ~D = —–--— .

c c

Choice of a particular value for any one of the quan-

tities, r, x, 6A or 6B immediately determines the other

three. But since r and X depend on ratios of diameters,

one degree of freedom still remains. That: is, one of the

three diameters can be chosen arbitrarily:, after which

3 Unless otherwise stated air dielectric is assumed.
4 “Fringing capacitance” is a convenient device for representing

the effect of the discontinuity in the center conductor. \Vhinnery,
Jamieson, and Robhins have shown [2] [3] that the types of discon-
tiuuities considered in this paper can be accurately represented by
one or more lomped frequency-independent capacitances, with the
usual transmission-line equations applying to both sides of the
~apacitallces. Further discussion of “fringing capacitances” and their

effects is included elsewhere in this paper.
6 This cavity configuration permits the iudepencle ut choice of five

parameters: d,, d!, da, LA, and LB. ( Cl,, k not independent, but de-
pends on the ca~-it~- dimensions [2], [3]. ) Thus, it may be possible to
satisfy as many as five independent design conditions. A few of the
many conditions which might be of interest in particular applications
are as follom-s: 1 ) Synthesize for a specified Z~, 2) Synthesize for a
specified ZB, 3) Synthesize for specified diameters, 4) Minimize over-
all cavity length L.i+LzJ, 5) Synthesize so that the resonant fre-
quencies shift as little as possible over a range of values of terminat-
i ug capacitance. Ou ly the two primary conditions (dual-resonance and
insensitivity) are considered in detail in this paper, however.
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Fig. 2—Solutions for in-line cavity for n =2
neglecting fringing capacitance.

the other two diameters can be determined from the

definitions of r and X using the known values of fl, CO,

r, and X, and the formulas

L&
— = log,–l ~

d,

and

(7)

(8)

E~ect of Fringing Capacitance

Analysis of the original model (hereafter referred to

as the fringing capacitance model) is considerably more

complicated than that of the simplified model. Also,

because CF depends on actual diameters, rather than

ratios of diameters, solutions must be tabulated as a

function of two parameters rather than the single

parameter 0~ that sufficed for the results shown in

Fig. 2.

To solve this problem, a digital computer was pro-

grammed to find solutions to (5) for n = 2 for specified

values of CO, fl, dl, and ds, and for a series of values of cL,

and at the same time to calculate the value of each side

c The value of CF was determined in each case from equations
which were fitted to the curves given by Whinnery and Jamieson
[2], [3]. If a particular application requires more accurate calculation
of C~ than is possible by this method, then the complete procedure
given in these references could be used.
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Fig. 3—PIot of t~pic@ results. for in-line cavity,
based on the frmgmg capacitance model.

of (6) for each solution, thus allowing the cavity de-

signer to pick (by interpolation) the one value of dl

and the corresponding values of 6-4 and OB which also

satisfy (6). Fig. 3 is a plot of the computed results for

the particular case n =2, ~= 775 Mc, C= 1.75 pf,

dl = 0.3414 inch, and ds = 0.936 inch. Arrows indicate

the required values of 6A, f?B, and dz,.

To satisf y one (or two) condition(s) in addition to the

dual-resonance condition and the insensitivity condi-

tion, a series of solutions for various values of dl and d3

could be obtained from which the desired solutions (or

solution) could be selected.

Comparison of Results for Simplified Model with Results

for Complete Model

To get some estimate of the error introduced by the

neglect of fringing capacitance, a comparison was made

for the particular case covered by Fig. 3. Fig. 2 was used

to determine the corresponding solution of the simplified

problem for the same values of dl and d3 (i.e., ZB

=60.5136 ohms), and for CO=l.75 pf, and fI=775 Mc

(which result in X= 1.939). The arrows on Fig. 2 indi-

cate the resultant values of 8A, @B, and r. Fig. b shows

how the two results compare. The conclusion that can
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Fig. 4—Comparison of results from simplified
model and fringing capacitance model.

be drawn, in this case at least, is that, while the simpli-

fied model can be used to determine rather closely the

ranges of dz, 6A, and 6B over which solutions based on

the fringing capacitance model can be expected, it is

not sufficiently accurate to be used as a basis for actua~

cavity construction.

Re-Entrant Cavities

A major portion of the over-all length of the cavity

shown in Fig. 4 is taken up by the low-impedance sec-

tion of coaxial line. Further study shows this to be gen-

erally true of the in-line type of cavity. The re-entrant

designs shown in Fig. 1(b) and (c) make possible a con-

siderable saving in both length and volume. Another

advantage of the re-entrant designs is that, since these

cavities have seven parameters (Le., dl, dz, ds, d, LA, LB,

and Lc), itmay be possible to satisfy seven design condi-

tions, as opposed to the five conditions that were possi-

ble with the in-line type. The use of a dielectric other

than air in the re-entrant section’ adds an additional

parameter to the system, bringing the total to eight.

The analyses of the re-entrant configurations are

orders of magnitude more difficult than that of the in-

line configuration, due to the additional parameters and

also due to the fact that three fringing capacitances,

C*, C~, and Cc, located as shown in Fig. 1 (b) and (c),

must be taken into account [~], [3].

Digital computer programs were written to analyze

both the external and the internal re-entrant configura-

tions. Fig. 5 presents the results for the external re-

entrant cavity for the special case n =2, ~1 = 500 Mc,

dl= 0.28125 inch, d~= 1.436 inches, d= O.01 inch, and

c,= 1.00. This figure can be applied to the design of

particular cavities by choosing the capacitance that is

to be resonated and a value for one other parameter

(LA, LB, Lo, or dz), and then reading from the figure the

values for the remaining parameters. As before, addi-

tional conditions could perhaps be satisfied by other

choices of dl, da, d, and e,. The limited ranges of the

parameters shown in Fig. 5 do not necessarily imply

T If, as in the in-line case, the low-impedance section turned out to
be longer than the high-impedance section, the internal re-entrant
configuration could not be used in many cases, since the center cou-
ductor would not be long enough to accommodate the desired length
of re-entrant line. A dielectric allows the effective length of the re-
entrant line to be increased.
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Fig. 5—Plot of typical computer results for the external
re-extrant cavity model.

that no solutions exist outside of these ralngeS. How-

ever, in every special case that was investiga.ted, the

ranges were severely limited (particularly the range of

dz). Usually one or more exploratory computer runs had

to be made before the problem could be narrowed down

to the ranges in which solutions were possible.

In this connection, it should also be noted that all

the examples considered in this paper invc)lve standing-

wave patterns analogous to a quarter-wave mode for

the fundamental frequency and a three-quarter-wave

mode for the second harmonic. Other mode combina-

tions are possible but were not considered here because

minimum over-all length was desired.

The internal re-entrant model was investigated for

the special case n =2, ~1 = 600 Mc, e,= ‘i!. 10 (Teflon),

d =0.28125 inch, ds=O.936 inch, and d =0.01 inch.

Some solutions which satisfied both conditions were

found, but all of them involved either small values of Cor

values of LB larger than -Lc [a physically unrealizable

configuration in most practical applications, as inspec-

tion of Fig. 1 (c) will reveal]. Trends observed in the

computer output indicated that, in this case at least, a

larger value of c, might yield more practical results.

Further investigation of the internal re-entrant model

was not carried out, however, because it was assumed

that the validity of the approach and the approxima-

tions used could be adequately tested orl the basis of

results for the other two cavity types.

II 1. APPLICATION TO CAVITY DES:IGN

Actual coaxial cavities typically depart from the

models described above in two important respects:
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some losses are present, and

the simple open-end construction assumed in the

analyses is usually not used.

Losses are present due to the finite conductivity of

the conductors, the external loading, and the shunt

conductance of the terminating device (vacuum tube

‘(varactor,’7 etc.). When these losses are reasonably

small, however, they principally affect the Q of the

cavity and have only minor effect on the resonant fre-

quencies. Thus the models used here can be expected to

give a reasonable approximation to the performance of

well-designed and well-constructed cavities in many

applications.

The conditions at the open end of actual cavities can

also be fitted to the model, in many cases. A typical

UHF vacuum tube, such as the one shown in Fig. 4, has

anything but a constant conductor diameter inside the

tube. Pencil triodes even have a re-entrant section inside

the tube, since the grid is coaxial with the hollow plate

conductor. It has been shown by Whinnery, Jamieson

and Robbins [2], [3], however, that, if the cavity out-

side diameter is large compared to these internal con-

ductor diameters of the tube, the fringing capacitances

are small. Furthermore, the many individual fringing

capacitances typically present (due to the many changes

in diameter and dielectric constant in and near the tube)

are typically located within a region having dimensions

small compared to a wavelength, so that they can often

be well approximated by a single fringing capacitance

at a properly chosen location. s hTote also that, because

of the satisfaction of the insensitivity y condition, the

operation of the cavity will be insensitive to any small

variations with frequency of the equivalent capacitance.

Thus, it appears that the models considered here may be

useful for the design of actual coaxial cavities.

IV. EXPERIMENT~L RESULTS

To test the validity of the previously mentioned

analyses, experimental cavities were constructed and

tested. The lengths of the cavities were made adjustable,

so that dimensions near as well as at the design dimen-

sions could be evaluated.

Fig. 6 shows the experimental results for an in-line

cavity with dl = 0.3414 inch, d2=0.703 inch, and da

= 0.936 inch, which is the case discussed in Section II and

shown in Fig. 4 (solid lines). Fig. 6(a) reveals that the

desired result can indeed be achieved, and at dimensions

very close to the calculated dimensions. The pairs of

curves in Fig. 6(b) show the effects of variations in the

length dimensions away from the optimum values. It is

t The equivalent capacitance can be determined with the method
of W’hinnery and Jamieson, [2], [3]! or by direct experiment. Experi-
ments performed with a 5893 pencd triode in a simple ca>-ity ( 1 inch
outer conductor, 5/16 inch inner conductor) gave a value of C which
was constant within 5 per cent over the range in~-estigated, 600
to 1400 Mc. Corresponding results can be expected for other devices
and frequencies, as long as the wavelength is not too short.
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~
TuBE CAPACITANCE , Pf

(a)

January

TUBE CAPACITANCE, Pf

(b)

Fig. 6—Experimental results for in-line cavity. (a) Dimensions
essentially equal to the calculated values. (b) Dimensions
deviating from the calculated values.

apparent from these curves that, for small variations at

least, the low-frequency curves are less sensitive to di-

mensional changes than the high-frequency curves, and

that changes in LB are more critical than changes in LA.

The lowest pair of curves is included to show that di-

mensions which deviate significantly from the calculated

values produce greatly inferior results, and hence that

the obtaining of the desired behavior is indeed neither a

coincidence nor an inherent property of all such cavities.

This implies, further, that the design of such cavities by

purely experimental means would be very time con-

suming.

The experimental external re-entrant cavity model

was built to conform as closely as was practical to the

special case covered by Fig. 5. Lengths LA, LB, and Lc

[see Fig. 1 (b)] were adjustable. In this case, because

there are three variables and only two conditions to be

satisfied, a family of calculated results, rather than a

single result, is to be expected. Therefore, exploration

of a region including part of the calculated family,

rather than verification of a single calculated design,

was undertaken.

Fig. 7 shows some of the results obtained. Note that,

while the separation between the curves in Fig. 7(a) is in

general greater than that shown in Fig. 6(a), the curves

g A O.010-inch-thick copper sheet was rolled and soldered into a
tube, which was used as the re-entrant wall. This construction tech-
nique resulted in some variation in diameter and in concentricity.
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Fig. 7—Experimental results f m external re-entran t cavity.

in Fig. 7(a) remain close together over a wider range of

capacitance variation. Limitations in the experimental

equipment prevented checking the performance over an

even wider capacitance range, but it appears from Fig.

7 (a) that the curves should remain close to each other

over a capacitance range considerably beyond two-to-

one. Alternatively, some of the capacitance range could

be sacrificed for the sake of better midrange performance,

if the high-frequency curve could be shifted upwards

slightly. There is good reason to believe that a set of

values for L.~, LB, and Lc near those used in obtaining

Fig. 7(a) would accomplish this result. Fig. 7(b) shows

that here, as in the case of the in-line configuration,

good performance is not a foregone conclusion, and

hence that the calculated results eliminate the need for

a great deal of exploratory experimentation.

In general, the experimental results for the re-entrant

cavity did not agree with the calculated results as well

as in the in-line case previously considered.l” hTonethe-

less, the analyses for both configurations yielded results

very close to those determined experimentally. For

optimum performance in a given application, some

tuning may be needed, but the analyses allow a drastic

reduction in the range of the variables over which a

10 This is belie~-ed to be due in part to the fact that the frin~irw

capacitance approximations used become smn ewhat less accurate at
the small values of LA used, and in part to the limitations of the ex-
perimental setup, which rendered impractical an exact embodiment
of the math ematlcal model and a full investigation of all combinations
of L.4, LB, and Lc which might have been of interest.

solution must be sought. In the case of the re-entrant

design, this is especially important, since an experi-

mental cavity involving eight or nine manipulated vari-

ables (even if it could somehow be built) would be al-

most impossible to investigate experimentally in a rea-

sonable length of time.

V. RELATED PROBLEMS

The results of this investigation, and the success of

the mathematical model in dealing with this problem,

suggest that the same techniques might be effective in

the solution of different but related probl[ems, some of

which are as follows:

Synthesis of cavities which resonate at three or

more frequencies which are in specified ratios, har-

monically-related or not.

Synthesis of cavities which resonate at two or more

frequencies which maintain constant frequency sep-

arations (as opposed to frequency ratios) over a range

of terminating capacitances (i.e., for mixer applica-

tions).

Control of antiresonant frequencies in addition to

or instead of resonant frequencies (i. e., for filter appli-

cations).

Synthesis of tuning or modulation devices of special

characteristics, using voltage-variable capacitors to

obtain capacitance variation.

\71. CONCLtTSIONS

This paper has considered primarily cc}axial cavities

which satisfy both the dual-resonance condition and the

insensitivity condition. The mathematical jnodel which

has been used predicts that the desired conditions can

be met. Experimental cavities built according to com-

puted results gave performance very clo~se to the pre-

dicted performance, thus proving that the desired results

are indeed obtainable, and demonstrating the usefulness

of the method of analysis. Therefore, it should be possi-

ble, with a minimum of experimentation and/or tuning,

to design and build coaxial cavities which resonate at

two desired frequencies (harmonically-related or not),

in spite of wide variations in the terminating capaci-

tance.

14 PPEND1X I

DLTAL RESONANCE IN UNIFORM COAXIAL, CAVITIES

Dz~al Resonance Condition

Eq. (1), which pertains to uniform coaxial cavities,

has any number of solutions which satisfy the dual-

resonance condition. None of these solutions meets the

conditions required in this paper, for reasons described

below.

For this simple type of cavity, the appropriate form

of the impedance expression is

~TfL
Z(f) = jZO tan — o

c
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Applying the dual-resonance condition (5)

pression, defining

2ir~,L
8=—,

G
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to this ex-

and setting fz = nfl, gives, after simplification,

tan e = s tan M (dual-resonance condition).

The two sides of this equation are plotted in Fig.

(9)

8 for

the case n =4. There are four solutions to (9) in the

interval 0505r: 0=0, 0.8554, 2.4862, and r. Cor-

responding values appear in each interval k~56

<(k+l)r, k=l, 2, 0 . . .

Fig. 8—ExampIe of the satisfaction of the dual-resonance condi-
tion by a uniform coaxial cavity. n =4.

The cases O= O, r, 27r, . . . correspond to infinite

valuesll of C (or ZO), and hence are of practical value in

this application only when C or ZO are so very large that

they approximate this case. The case 6 = 0.8554 cor-

responds to flCZO = 0.1382, which is a meaningful solu-

tion satisfying the dual-resonance condition. Where

sensitivity to variations in terminating capacitance is

not important, this solution could be used. It is shown

u At a particular frequency a capacitor can be made to approxi-

mate an infinite capacitor by means of a properly-adjusted single
stub tuner—i.e:, the capacitor can be “resonated” at that frequency.
This combination will not be resonant at the harmonic frequency,
howeve~, and can not be used to meet the dual-resonance condition
as described here. Multiple-stub tuners might accomplish the desired
results? at” the cost of greater complexity and greater difficulty in
analysls. Realizing that stub tuners are nothing more than cavities
themselves, one perceives that these cavity-stub tuner circuits replace
the ra~ially-symrnetric series or peries-paralk+ c+vitv combinations
shown m Fig. 1 with parallel or series-parallel cu-cults of a type Iackmg
radial symmetry. It is this lack of radial symmetry which causes the
increased analytical difficulties which are associated with the stub-
tuner circuits. (Simple models, neglecting fringing capacitance, can
not be expected to suffice for these circuits any more than for the
multiple-section cavities considered in this paper. )

below, however, that this solution (as well as all others

possible with a uniform cavity) does not satisfy the

insensitivity condition. The case O= 2.4862 corresponds

to flCZO = – 0.1382, which requires negative values of C.

If figures corresponding to Fig. 8 are plotted for

n = 2, 3, 5, 6, etc., it becomes apparent that only one

other type of solution is possible. Solutions of this type

occur at

3T 57r
O=;) —, —1 ...,

2 2

and involve tan O= n tan ne = ~, which corresponds to

C= O. These are not useful solutions to the problem

posed in this paper, for reasons analogous to those given

for the case C = ~.

Insensitivity Condition

Applying the insensitivity condition (6) to

2.fL
Z(f) = jZo tan —

c

gives

27rL 2~f IL

(

2TL 2mzf IL
jzl) .— secz — = n? jzo — —secz

c c c c )

(insensitivity condition), (10)

which, upon simplification and use of the identity

secz 0 = 1 +tanz O, reduces to

1 + tan2 0 = nz + n2 tan2 @

(insensitivity condition). (11)

Since, by assumption, the dual-resonance condition (9)

is satisfied, this further reduces to

l=~a (insensitivity condition). (12)

But this is the trivial case n = 1 which is not even a dual-

resonance solution in the sense used here. Hence, it is

impossible for a uniform coaxial cavity to satisfy both

the dual-resonance condition and the insensitivity con-

dition.
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