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On the Synthesis of Dual-Resonant
Coaxial Cavities*

F. M. WALTZY}, MEMBER, IEEE

Summary—Mathematical analyses of multisection coaxial cavi-
ties predict the possibility of shifting one of the spurious resonant fre-
quencies (present in all coaxial cavities) to a desired frequency, thus
allowing one cavity to do the work of two. The specific problem con-
sidered in this paper is the design of cavities to resonate a terminating
capacitance (e.g., tube capacitance, “varactor” capacitance) at two
harmonically-related frequencies, with the additional requirement
that the two frequencies remain very nearly in the desired ratio de-
spite wide variations in the magnitude of the terminating capacitance.
(As one obvious application, a cavity meeting these requirements
would make possible an inherently-aligned single-cavity frequency
multiplier.)

Curves based on computed results for specific cases are pre-
sented. Experimental cavities constructed according to the predicted
designs have exhibited performance which is in very close agreement
with the analysis, thus verifying both the validity of the method of
analysis and the feasibility of the desired result.

Application of the same techniques to other and more general
problems (e.g., single-cavity mixers, voltage-tunable filters) are
suggested.

1. INTRODUCTION

N THE UHF FREQUENCY RANGE, coaxial
I[ cavities are widely used as resonant elements be-

cause they provide excellent performance and lend
themselves to straightforward design, production, and
tuning methods. Disadvantages include the spurious
resonant modes frequently encountered, and the exces-
sive size, weight, and complexity of the multiple-cavity
circuits needed for all except the simplest applications.
Thus, the paradoxical situation exists that coaxial cav-
ities have extra (and usually unwanted) resonant fre-
quencies, but that in a typical application a number of
cavities must be used in order to obtain resonance at the
desired set of frequencies.

This paper considers the use of multiple-section cav-
ities to shift a spurious resonant mode to a desired
multiple of the fundamental frequency in such a way
that the resonant frequency ratio is insensitive to varia-
tions in the terminating capacitance (i.c., the desired
frequency ratio is maintained within close limits in spite
of wide wvariations in the terminating capacitance).
Insensitivity to capacitance variation eliminates the
need for selection or tuning of cavities to match indi-
vidual tubes or allows the use of such cavities with time-
varying capacitances.

Results of the analyses of three different cavity con-
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figurations are presented. These analyses, based on
lossless approximations to the actual cavities, indicate
that the desired results can be achieved with cavities of
the types considered. Experimental results are pre-
sented which verify both the feasibility of the desired
result and the validity of the analysis procedure. For
purposes of comparison, uniform coaxial cavities are
also investigated (Appendix I), and it is shown that the
desired results can not be obtained with such cavities.

II. ANALYSIS

A uniform lossless coaxial cavity of length L and
characteristic impedance Z,, short-circuited at one end
and with a capacitance C connected across the other
end, resonates at an infinite number of frequencies f
each of which satisfies the following transcendental
equation (neglecting end effects):

L
T2nfC + jZ, tan 21rf—;~ =0 ¢
Ly

where ¢ is the velocity of propagation of electromagnetic
radiation in the line under consideration. Except in
certain special cases (considered in Appendix I), these
frequencies are not harmonically related.

In certain applications (e.g., frequency multipliers,
mixers) it is desirable to have a single cavity resonate a
terminating capacitance (e.g., tube capacitance, diode
capacitance) at two harmonically-related frequencies.
(Cavities having this property will be said to satisfy the
dual-resonance condition.) Furthermore, the frequency
ratio should be insensitive to variations in the terminat-
ing capacitance, so that the dual-resonance condition
is maintained, to a good approximation, over a range of
terminating capacitance variation. A cavity design
which satisfied this condition (henceforth referred to as
the insensitivity condition) would be particularly desir-
able in applications where the terminating capacitance
changes with time or where production or cost require-
ments preclude the tuning or matching of particular
cavities to particular tubes. It is shown below that
coaxial cavities of the types depicted in Fig. 1 can be
designed to produce the desired results, whereas uniform
coaxial cavities can never meet both conditions (see
Appendix I).

These two conditions will now be stated in terms of
the cavity variables and parameters: let Z(f) represent
the impedance of the cavity, as seen from the open end,
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Fig. 1—Cavity configurations: (a) in-line, showing use with “light-
house” triode, (b) external re-entrant, showing use with “varac-
tor,” (c) internal re-entrant, showing use with “pencil” triode.
(C is the equivalent capacitance of the tube or “varactor.”)

where Z(f) is a given function! of f. For each value of
terminating capacitance C, any frequency which satis-
fies the relation

(resonance condition) (2)

is a resonant frequency. Assume that there exists a pair
of solutions to (2), f=f1(C) and f=/3(C). Ideally, fa
should equal #f; for all values of C, where # is the desired
frequency ratio. This is not possible, in general, but
can be approximated? over a limited range of C near Cy,
if Z(f) is chosen so that

f2(Co) = nf1(Cyp) (dual-resonance condition) (3)
and
df:(C afi(C
/(C) =un (€ (insensitivity condition).  (4)
aC e, aC le,

These conditions will now be rewritten in a more usable
form: Substitution of (2) into (3) yields

Z[f1(Co)] = nZ[f»(Co)]

(dual-resonance condition)  (5)

! The detailed expressions used for each type of cavity are given
by Waltz [1].

2 This approximation makes use of the first two terms of the
Taylor’s-series expansions of fi(C) and fo(C) about C= Cs. A better
approximation could be achieved by considering more terms in the
series, at the cost of greatly increased computational difficulties.
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as an equivalent to (3). Evaluation of df/dc from (2), (3)
and (5) allows (4) to be rewritten as

82(f) L 97)
of r=rico) of
(insensitivity condition). (6)

Ff=nf1(Cp)

Thus, the satisfaction of (2) at f=711(Co), and of (3) and
(6), is sufficient to guarantee that Z(f) satisfies both the
dual-resonance condition and the insensitivity condi-
tion at C=C,.

Amnalsis of In-Line Cavity

Consider first the in-line type, Fig. 1(a), with lengths
L4 and Lpg; diameters dy, ds, and ds; characteristic im-
pedances® Z4 and Zp; terminating capacitance C; and
fringing capacitance Cr,* and assume that the con-
ductors have infinite conductivity.® The impedance
expression Z(f) for this case (given in detail by Waltz
[1]) is sufficiently complicated that an easy determina-
tion of the ranges of the variables over which solutions
exist is impossible. Most of the difficulty arises due to
the complex inter-relationship of Cr and the cavity
dimensions. Since in the applications contemplated in
this paper Cr is usually not large compared to C, Cp will
be neglected in the initial approach to the problem.
Solution of even this simplified problem in terms of
lknown functions is for practical purposes not possible,
but solution by numerical methods is not difficult. Fig. 2
shows part of the solution to this problem in terms of
the quantities 7, X, 04, and 83 for the case n =2, where

Zp 1
= —> X = ’
Z4 27f1CoZ 5
2mf1 L 27f1 L
4 = —‘fl—A7 and Op = [L-B .
c 4

Choice of a particular value for any one of the quan-
tities, 7, X, 64 or fp immediately determines the other
three. But since » and X depend on ratios of diameters,
one degree of freedom still remains. That is, one of the
three diameters can be chosen arbitrarily, after which

3 Unless otherwise stated air dielectric is assumed.

4 “Fringing capacitance” is a convenient device for representing
the effect of the discontinuity in the center conductor. Whinnery,
Jamieson, and Robbins have shown [2] |3] that the types of discon-
tinuities considered in this paper can be accurately represented by
one or more lumped frequency-independent capacitances, with the
usual transmission-line equations applying to both sides of the
capacitances. Further discussion of “fringing capacitances” and their
effects is included elsewhere in this paper.

5 This cavity configuration permits the independent choice of five
parameters: di, de, d3, L4, and LB (Cll is not independent, but de-
pends on the cavity dimensions [2], [3].) Thus, it may be possible to
satisfy as many as five mdependent design condltlons A few of the

many conditions which might be of interest in pdrtmu lar applications
are as follows: 1) Synthesize for a specified Z4, 2) Synthesize for a
specified Zp, 3) Synthesize for specified diameters, 4) Minimize over-
all cavity length L4+Lg, 5) Synthesize so that the resonant fre-
quencies shift as little as possible over a range of values of terminat-
ing capacitance. Only the two primary conditions (dual-resonance and
insensitivity) are considered in detail in this paper, however.
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Fig. 2——Solutions for in-line cavity for n=2
neglecting fringing capacitance.

the other two diameters can be determined from the
definitions of # and X using the known values of fi, Co,
r, and X, and the formulas

ds Z4

— = log, '— 7

ds & 60 N
and

ds ZB

— = log,/1—— - 8

o g S )

Effect of Fringing Capacitance

Analysis of the original model (hereafter referred to
as the fringing capacitance model) is considerably more
complicated than that of the simplified model. Also,
because Cr depends on actual diameters, rather than
ratios of diameters, solutions must be tabulated as a
function of fwo parameters rather than the single
parameter 6z that sufficed for the results shown in
Fig. 2.

To solve this problem, a digital computer was pro-
grammed? to find solutions to (5) for #=2 for specified
values of Cy, f1, d1, and ds, and for a series of values of d,
and at the same time to calculate the value of each side

6 The value of Cr was determined in each case from equations
which were fitted to the curves given by Whinnery and Jamieson
121, [3]). If a particular application requires more accurate calculation
of Cr than is possible by this method, then the complete procedure
given in these references could be used.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

January
70
YN
66 AN
64 \
62 ~
60 d
w \
u 58
g - n=2 \
56 f,=775Mc
- L C=175pf 8,
Stsa 4= 0 3414 1n ™~
L dy 0.9361n N~
51 -
11
L1
10
/
/
22f)
° SRt
\
8
; R , 9zlf)
L1 INSENS COND. T ' et ih
. L1 SATISFIED HERE
%
7
a .73\
5 v
z .72
& \ dz |
~
\\l ///
70
. !
28 30 32 34 36 38 40 42 44
eB,DEGREEs

Fig. 3—Plot of typical results for in-line cavity,
based on the fringing capacitance model.

of (6) for each solution, thus allowing the cavity de-
signer to pick (by interpolation) the one value of d»
and the corresponding values of 84 and 6p which also
satisfy (6). Fig. 3 is a plot of the computed results for
the particular case n=2, f=775 Mc, C=1.75 pf,
d1=0.3414 inch, and d;=0.936 inch. Arrows indicate
the required values of 64, 0z, and ds.

To satisfy one (or two) condition(s) in addition to the
dual-resonance condition and the insensitivity condi-
tion, a series of solutions for various values of di and ds
could be obtained from which the desired solutions (or
solution) could be selected.

Comparison of Results for Simplified Model with Results
for Complete Model

To get some estimate of the error introduced by the
neglect of fringing capacitance, a comparison was made
for the particular case covered by Fig. 3. Fig. 2 was used
to determine the corresponding solution of the simplified
problem for the same values of d; and d; (i.e., Zp
=60.5136 ohms), and for Co=1.75 pf, and f1=775 Mc
(which result in X =1.939). The arrows on Fig. 2 indi-
cate the resultant values of 04, g, and . Fig. 4 shows
how the two results compare. The conclusion that can
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shown in Fig. 4 is taken up by the low-impedance sec-
tion of coaxial line. Further study shows this to be gen-
erally true of the in-line type of cavity. The re-entrant
designs shown in Fig. 1(b) and (c) make possible a con-
siderable saving in both length and volume. Another
advantage of the re-entrant designs is that, since these
cavities have seven parameters (z.¢., di, ds, ds, &, L4, L,
and L¢), it may be possible to satisfy seven design condi-
tions, as opposed to the five conditions that were possi-
ble with the in-line type. The use of a dielectric other
than air in the re-entrant section” adds an additional
parameter to the system, bringing the total to eight.

The analyses of the re-entrant configurations are
orders of magnitude more difficult than that of the in-
line configuration, due to the additional parameters and
also due to the fact that three fringing capacitances,
Cy, Cp, and Cg¢, located as shown in Fig. 1(b) and (¢),
must be taken into account [2], [3].

Digital computer programs were written to analyze
both the external and the internal re-entrant configura-
tions. Fig. 5 presents the results for the external re-
entrant cavity for the special case =2, f;=500 Mec,
d;=0.28125 inch, d3=1.436 inches, d=0.01 inch, and
€.=1.00. This figure can be applied to the design of
particular cavities by choosing the capacitance that is
to be resonated and a value for one other parameter
(L4, Lp, L¢, or d2), and then reading from the figure the
values for the remaining parameters. As before, addi-
tional conditions could perhaps be satisfied by other
choices of di, d3, d, and €,. The limited ranges of the
parameters shown in Fig. 5 do not necessarily imply

7 1f, as in the in-line case, the low-impedance section turned out to
be longer than the high-impedance section, the internal re-entrant
configuration could not be used in many cases, since the center con-
ductor would not be long enough to accommodate the desired length
of re-entrant line. A dielectric allows the effective length of the re-
entrant line to be increased.

Lg ,INCHES

Fig. 5—Plot of typical computer results for the external
re-extrant cavity model.

that no solutions exist outside of these ranges. How-
ever, in every special case that was investigated, the
ranges were severely limited (particularly the range of
ds). Usually one or more exploratory computer runs had
to be made before the problem could be narrowed down
to the ranges in which solutions were possible.

In this connection, it should also be noted that all
the examples considered in this paper involve standing-
wave patterns analogous to a quarter-wave mode for
the fundamental frequency and a three-quarter-wave
mode for the second harmonic. Other mode combina-
tions are possible but were not considered here because
minimum over-all length was desired.

The internal re-entrant model was investigated for
the special case #=2, fi=600 Mc, ¢, =2.10 (Teflon),
d =0.28125 inch, d3=0.936 inch, and d=0.01 inch.
Some solutions which satisfied both conditions were
found, but all of them involved either small values of C or
values of Lp larger than L¢ [a physically unrealizable
configuration in most practical applications, as inspec-
tion of Fig. 1(c) will reveal]. Trends observed in the
computer output indicated that, in this case at least, a
larger value of ¢ might yield more practical results.
Further investigation of the internal re-entrant model
was not carried out, however, because it was assumed
that the validity of the approach and the approxima-
tions used could be adequately tested on the basis of
results for the other two cavity types.

II1. ApprricaTiON TO CAvITY DESIGN

Actual coaxial cavities typically depart from the
models described above in two important respects:
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1) some losses are present, and

2) the simple open-end construction assumed in the
analyses is usually not used.

Losses are present due to the finite conductivity of
the conductors, the external loading, and the shunt
conductance of the terminating device (vacuum tube
“varactor,” etc.). When these losses are reasonably
small, however, they principally affect the Q of the
cavity and have only minor effect on the resonant fre-
quencies. Thus the models used here can be expected to
give a reasonable approximation to the performance of
well-designed and well-constructed cavities in many
applications.

The conditions at the open end of actual cavities can
also be fitted to the model, in many cases. A typical
UHF vacuum tube, such as the one shown in Fig. 4, has
anything but a constant conductor diameter inside the
tube. Pencil triodes even have a re-entrant section inside
the tube, since the grid is coaxial with the hollow plate
conductor. It has been shown by Whinnery, Jamieson
and Robbins [2], [3], however, that, if the cavity out-
side diameter is large compared to these internal con-
ductor diameters of the tube, the fringing capacitances
are small. Furthermore, the many individual fringing
capacitances typically present (due to the many changes
in diameter and dielectric constant in and near the tube)
are typically located within a region having dimensions
small compared to a wavelength, so that they can often
be well approximated by a single fringing capacitance
at a properly chosen location.® Note also that, because
of the satisfaction of the insensitivity condition, the
operation of the cavity will be insensitive to any small
variations with frequency of the equivalent capacitance.
Thus, it appears that the models considered here may be
useful for the design of actual coaxial cavities.

IV. EXPERIMENTAL RESULTS

To test the validity of the previously mentioned
analyses, experimental cavities were constructed and
tested. The lengths of the cavities were made adjustable,
so that dimensions #zear as well as af the design dimen-
sions could be evaluated.

Fig. 6 shows the experimental results for an in-line
cavity with d;=0.3414 inch, d;=0.703 inch, and d;
=0.936 inch, which is the case discussed in Section [T and
shown in Fig. 4 (solid lines). Fig. 6(a) reveals that the
desired result can indeed be achieved, and at dimensions
very close to the calculated dimensions. The pairs of
curves in Fig. 6(b) show the effects of variations in the
length dimensions away from the optimum values. It is

& The equivalent capacitance can be determined with the method
of Whinnery and Jamieson, (2], {3], or by direct experiment. Experi-
ments performed with a 5893 pencil triode in a simple cavity (1 inch
outer conductor, 5/16 inch inner conductor) gave a value of C which
was constant within 5 per cent over the range investigated, 600
to 1400 Mc. Corresponding results can be expected for other devices
and frequencies, as long as the wavelength is not too short.
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Fig. 6—Experimental results for in-line cavity. (a) Dimensions
essentially equal to the calculated values. (b) Dimensions
deviating from the calculated values.

apparent from these curves that, for small variations at
least, the low-frequency curves are less sensitive to di-
mensional changes than the high-frequency curves, and
that changes in Lp are more critical than changesin L4.
The lowest pair of curves is included to show that di-
mensions which deviate significantly from the calculated
values produce greatly inferior results, and hence that
the obtaining of the desired behavior is indeed neither a
coincidence nor an inherent property of all such cavities.
This implies, further, that the design of such cavities by
purely experimental means would be very time con-
suming.

The experimental external re-entrant cavity model
was built to conform as closely as was practical® to the
special case covered by Fig. 5. Lengths L4, Lz, and L¢
[see Fig. 1(b)] were adjustable. In this case, because
there are three variables and only two conditions to be
satisfied, a family of calculated results, rather than a
single result, is to be expected. Therefore, exploration
of a region including part of the calculated family,
rather than verification of a single calculated design,
was undertaken.

Fig. 7 shows some of the results obtained. Note that,
while the separation between the curves in Fig. 7(a) is in
general greater than that shown in Fig. 6(a), the curves

® A 0.010-inch-thick copper sheet was rolled and soldered into a
tube, which was used as the re-entrant wall. This construction tech-
nique resulted in some variation in diameter and in concentricity.
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Fig.

in Fig. 7(a) remain close together over a wider range of
capacitance variation. Limitations in the experimental
equipment prevented checking the performance over an
even wider capacitance range, but it appears from Fig.
7(a) that the curves should remain close to each other
over a capacitance range considerably beyond two-to-
one. Alternatively, some of the capacitance range could
be sacrificed for the sake of better midrange performance,
if the high-frequency curve could be shifted upwards
slightly. There is good reason to believe that a set of
values for L4, Ly, and L¢ near those used in obtaining
Fig. 7(a) would accomplish this result. Fig. 7(b) shows
that here, as in the case of the in-line configuration,
good performance is not a foregone conclusion, and
hence that the calculated results eliminate the need for
a great deal of exploratory experimentation.

In general, the experimental results for the re-entrant
cavity did not agree with the calculated results as well
as in the in-line case previously considered.'® Nonethe-
less, the analyses for both configurations yielded results
very close to those determined experimentally. For
optimum performance in a given application, some
tuning may be needed, but the analyses allow a drastic
reduction in the range of the variables over which a

10 This is believed to be due in part to the fact that the fringing
capacitance approximations used become somewhat less accurate at
the small values of L used, and in part to the limitations of the ex-
perimental setup, which rendered impractical an exact embodiment
of the mathematical model and a full investigation of all combinations
of L4, Lp, and L¢ which might have been of interest.
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solution must be sought. In the case of the re-entrant
design, this is especially important, since an experi-
mental cavity involving eight or nine manipulated vari-
ables (even if it could somehow be built) would be al-
most impossible to investigate experimentally in a rea-
sonable length of time.

V. RELATED PrOBLEMS

The results of this investigation, and the success of
the mathematical model in dealing with this problem,
suggest that the same techniques might be effective in
the solution of different but related problems, some of
which are as follows:

Synthesis of cavities which resonate at three or
more frequencies which are in specified ratios, har-
monically-related or not.

Synthesis of cavities which resonate at two or more
frequencies which maintain constant f{requency sep-
arations (as opposed to frequency ratios) over a range
of terminating capacitances (z.e., for mixer applica-
tions).

Control of antiresonant frequencies in addition to
or instead of resonant frequencies (7.e., for filter appli-
cations).

Synthesis of tuning or modulation devices of special
characteristics, using voltage-variable capacitors to
obtain capacitance variation.

VI. CoNncLusiONS

This paper has considered primarily coaxial cavities
which satisfy both the dual-resonance condition and the
insensitivity condition. The mathematical model which
has been used predicts that the desired conditions can
be met. Experimental cavities built according to com-
puted results gave performance very close to the pre-
dicted performance, thus proving that the desired results
are indeed obtainable, and demonstrating the usefulness
of the method of analysis. Therefore, it should be possi-
ble, with a minimum of experimentation and/or tuning,
to design and build coaxial cavities which resonate at
two desired frequencies (harmonically-related or not),
in spite of wide variations in the terminating capaci-
tance.

ArpENDIX |
DuaL RESONANCE IN UNIFORM COAXIAL CAVITIES
Dual Resonance Condition

Eq. (1), which pertains to uniform coaxial cavities,
has any number of solutions which satisfy the dual-
resonance condition. None of these solutions meets the
conditions required in this paper, for reasons described
below.

For this simple type of cavity, the appropriate form
of the impedance expression is

2nfL
Z(f) = jZy tan —— -
c
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Applying the dual-resonance condition (5) to this ex- below, however, that this solution (as well as all others
pression, defining possible with a uniform cavity) does not satisfy the
insensitivity condition. The case §=2.4862 corresponds

, to f1CZy= —0.1382, which requires negative values of C.
If figures corresponding to Fig. 8 are plotted for

n=2, 3, 5, 6, etc., it becomes apparent that only one
other type of solution is possible. Solutions of this type

_ Zﬂ'f]L

4

and setting fa=nf1, gives, after simplification,

tan 0 = » tan nf
The two sides of this equation are plotted in Fig. 8 for
the case #=4. There are four solutions to (9) in the
interval 0<0<m: 6=0, 0.8554, 2.4862, and =. Cor-
responding values appear in each interval kwr<6

(9 occur at

(dual-resonance condition).
37 5w
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and involve tan § =# tan #f= o, which corresponds to
C=0. These are not useful solutions to the problem
posed in this paper, for reasons analogous to those given

<+, b=1,2,---.
for the case C= «.

Insensitivity Condition
Applying the insensitivity condition (6) to

~—d TNl

2
Z(f) = jZo tan

g-2mh.

- 0~
<2 2 4862
\\\
o

o
3 9970

/

8554

- II
I // / / / .
wef / / ! gives
al ] i i
W { i 2L 2xfiL _2nL 2anfil
! | ] 724" sec? = n?|jZ, sec? ————
-5 - I' : [ Cc c c
-6} ! ! !
(insensitivity condition), (10)
Fig. 8—Example of the satisfaction of the dual-resonance condi- . i i .
tion by a uniform coaxial cavity. n=4. which, upon simplification and use of the identity
sec2@=1-+4tan? 4§, reduces to
correspond to infinite 1 4 tan? 8 = »n? + n? tan? uf
(insensitivity condition). (11)

The cases =0, m, 2w, - -
values! of C (or Zg), and hence are of practical value in
Since, by assumption, the dual-resonance condition (9)

this application only when C or Z, are so very large that
is satisfied, this further reduces to

they approximate this case. The case 0=0.8554 cor-
responds to f1CZ,=0.1382, which is a meaningful solu-
(insensitivity condition).

tion satisfying the dual-resonance condition. Where
sensitivity to variations in terminating capacitance is
not important, this solution could be used. It is shown But thisis the trivial case # =1 which is not even a dual-
resonance solution in the sense used here. Hence, it is
impossible for a uniform coaxial cavity to satisfy both
the dual-resonance condition and the insensitivity con-

(12)

1 = n?

" At a particular frequency a capacitor can be made to approxi-

mate an infinite capacitor by means of a properly-adjusted single
stub tuner—i.e., the capacitor can be “resonated” at that frequency. .-
This combination will not be resonant at the harmonic frequency, dition.
however, and can not be used to meet the dual-resonance condition REFERENCES
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results, at the cost of greater complexity and greater difficulty in  [1] F. M. Waltz, “On the Synthesis of Dual-Resonant Cavities with a
analysxs Realizing that stub tuners are nothing more than cavities Digital Computer,” Cooley Electronics Lab., The University of
Michigan, Ann Arbor, Mich., Tech. Memorandum No. 90; Decem-

themselves, one perceives that these cavity-stub tuner circuits replace
ber, 1962.
[2] J. R. Whinnery and H. W. Jamieson, “Equivalent circuits for

the radlally -symmetric series or series- parallel cavity combinations
discontinuities 1n transmission lines,” Proc. IRE, vol. 32, pp. 98—

shown in Fig. 1 with parallel or series-parallel circuits of a type lacking
radial symmetry. It 1s this lack of radial symmetry which causes the
increased analytical difficulties which are associated with the stub-
tuner circuits. (Simple models, neglecting fringing capacitance, can
not be expected to suffice for these circuits any more than for the

i . 1944,

multiple-section cavities considered in this paper.)

114; February, 1944.
[31 J. R. Whinnery, H. W. Jamieson, and T. E. Robbins, “Coaxial
line discontinuities,” Proc. IRE, vol. 32, pp. 695-709; November




